Structural characterizations of the navigational expressiveness of relation algebras on a tree
نویسندگان
چکیده
Given a document D in the form of an unordered node-labeled tree, we study the expressiveness on D of various basic fragments of XPath, the core navigational language on XML documents. Working from the perspective of these languages as fragments of Tarski’s relation algebra, we give characterizations, in terms of the structure of D, for when a binary relation on its nodes is definable by an expression in these algebras. Since each pair of nodes in such a relation represents a unique path in D, our results therefore capture the sets of paths in D definable in each of the fragments. We refer to this perspective on language semantics as the “global view.” In contrast with this global view, there is also a “local view” where one is interested in the nodes to which one can navigate starting from a particular node in the document. In this view, we characterize when a set of nodes in D can be defined as the result of applying an expression to a given node of D. All these definability results, both in the global and the local view, are obtained by using a robust two-step methodology, which consists of first characterizing when two nodes cannot be distinguished by an expression in the respective fragments of XPath, and then bootstrapping these characterizations to the desired results.
منابع مشابه
CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP
Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S
متن کاملCharacterizations of amenable hypergroups
Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.
متن کاملOn (σ, τ)-module extension Banach algebras
Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.
متن کاملOn φ-Connes amenability of dual Banach algebras
Let φ be a w-continuous homomorphism from a dual Banach algebra to C. The notion of φ-Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is dened. It is proved that the existence of such a diagonal is equivalent to φ-Connes amenability. It is also shown that φ-Connes amenability is equivalent to so-called φ-splitting of a certain short...
متن کاملSOME CHARACTERIZATIONS OF HYPER MV -ALGEBRAS
In this paper we characterize hyper MV -algebras in which 0 or1 are scalar elements . We prove that any nite hyper MV -algebra that 0is a scaler element in it, is an MV -algebra. Finally we characterize hyperMV -algebras of order 2 and order 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 82 شماره
صفحات -
تاریخ انتشار 2016